Papers
Topics
Authors
Recent
2000 character limit reached

On Improving Deep Active Learning with Formal Verification

Published 16 Dec 2025 in cs.LG and cs.LO | (2512.14170v1)

Abstract: Deep Active Learning (DAL) aims to reduce labeling costs in neural-network training by prioritizing the most informative unlabeled samples for annotation. Beyond selecting which samples to label, several DAL approaches further enhance data efficiency by augmenting the training set with synthetic inputs that do not require additional manual labeling. In this work, we investigate how augmenting the training data with adversarial inputs that violate robustness constraints can improve DAL performance. We show that adversarial examples generated via formal verification contribute substantially more than those produced by standard, gradient-based attacks. We apply this extension to multiple modern DAL techniques, as well as to a new technique that we propose, and show that it yields significant improvements in model generalization across standard benchmarks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.