Papers
Topics
Authors
Recent
2000 character limit reached

IntentMiner: Intent Inversion Attack via Tool Call Analysis in the Model Context Protocol (2512.14166v1)

Published 16 Dec 2025 in cs.CR and cs.AI

Abstract: The rapid evolution of LLMs into autonomous agents has led to the adoption of the Model Context Protocol (MCP) as a standard for discovering and invoking external tools. While this architecture decouples the reasoning engine from tool execution to enhance scalability, it introduces a significant privacy surface: third-party MCP servers, acting as semi-honest intermediaries, can observe detailed tool interaction logs outside the user's trusted boundary. In this paper, we first identify and formalize a novel privacy threat termed Intent Inversion, where a semi-honest MCP server attempts to reconstruct the user's private underlying intent solely by analyzing legitimate tool calls. To systematically assess this vulnerability, we propose IntentMiner, a framework that leverages Hierarchical Information Isolation and Three-Dimensional Semantic Analysis, integrating tool purpose, call statements, and returned results, to accurately infer user intent at the step level. Extensive experiments demonstrate that IntentMiner achieves a high degree of semantic alignment (over 85%) with original user queries, significantly outperforming baseline approaches. These results highlight the inherent privacy risks in decoupled agent architectures, revealing that seemingly benign tool execution logs can serve as a potent vector for exposing user secrets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.