Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic stacking ensemble learning with investor knowledge representations for stock market index prediction based on multi-source financial data (2512.14042v1)

Published 16 Dec 2025 in cs.CE

Abstract: The patterns of different financial data sources vary substantially, and accordingly, investors exhibit heterogeneous cognition behavior in information processing. To capture different patterns, we propose a novel approach called the two-stage dynamic stacking ensemble model based on investor knowledge representations, which aims to effectively extract and integrate the features from multi-source financial data. In the first stage, we identify different financial data property from global stock market indices, industrial indices, and financial news based on the perspective of investors. And then, we design appropriate neural network architectures tailored to these properties to generate effective feature representations. Based on learned feature representations, we design multiple meta-classifiers and dynamically select the optimal one for each time window, enabling the model to effectively capture and learn the distinct patterns that emerge across different temporal periods. To evaluate the performance of the proposed model, we apply it to predicting the daily movement of Shanghai Securities Composite index, SZSE Component index and Growth Enterprise index in Chinese stock market. The experimental results demonstrate the effectiveness of our model in improving the prediction performance. In terms of accuracy metric, our approach outperforms the best competing models by 1.42%, 7.94%, and 7.73% on the SSEC, SZEC, and GEI indices, respectively. In addition, we design a trading strategy based on the proposed model. The economic results show that compared to the competing trading strategies, our strategy delivers a superior performance in terms of the accumulated return and Sharpe ratio.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.