Papers
Topics
Authors
Recent
2000 character limit reached

Renormalization group for spectral collapse in random matrices with power-law variance profiles (2512.13883v1)

Published 15 Dec 2025 in cond-mat.stat-mech and physics.data-an

Abstract: We propose a renormalization group (RG) approach to compare and collapse eigenvalue densities of random matrix models of complex systems across different system sizes. The approach is to fix a natural spectral scale by letting the model normalization run with size, turning raw spectra into comparable, collapsed density curves. We demonstrate this approach on generalizations of two classic random matrix ensembles--Wigner and Wishart--modified to have power-law variance profiles. We use random matrix theory methods to derive self-consistent fixed-point equations for the resolvent to compute their eigenvalue densities, we define an RG scheme based on matrix decimation, and compute the Beta function controlling the RG flow as a function of the variance profile power-law exponent. The running normalization leads to spectral collapse which we confirm in simulations and solutions of the fixed-point equations. We expect this RG approach to carry over to other ensembles, providing a method for data analysis of a broad range of complex systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.