ValuePilot: A Two-Phase Framework for Value-Driven Decision-Making (2512.13716v1)
Abstract: Personalized decision-making is essential for human-AI interaction, enabling AI agents to act in alignment with individual users' value preferences. As AI systems expand into real-world applications, adapting to personalized values beyond task completion or collective alignment has become a critical challenge. We address this by proposing a value-driven approach to personalized decision-making. Human values serve as stable, transferable signals that support consistent and generalizable behavior across contexts. Compared to task-oriented paradigms driven by external rewards and incentives, value-driven decision-making enhances interpretability and enables agents to act appropriately even in novel scenarios. We introduce ValuePilot, a two-phase framework consisting of a dataset generation toolkit (DGT) and a decision-making module (DMM). DGT constructs diverse, value-annotated scenarios from a human-LLM collaborative pipeline. DMM learns to evaluate actions based on personal value preferences, enabling context-sensitive, individualized decisions. When evaluated on previously unseen scenarios, DMM outperforms strong LLM baselines, including GPT-5, Claude-Sonnet-4, Gemini-2-flash, and Llama-3.1-70b, in aligning with human action choices. Our results demonstrate that value-driven decision-making is an effective and extensible engineering pathway toward building interpretable, personalized AI agents.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.