From Many Models, One: Macroeconomic Forecasting with Reservoir Ensembles
Abstract: Model combination is a powerful approach to achieve superior performance with a set of models than by just selecting any single one. We study both theoretically and empirically the effectiveness of ensembles of Multi-Frequency Echo State Networks (MFESNs), which have been shown to achieve state-of-the-art macroeconomic time series forecasting results (Ballarin et al., 2024a). Hedge and Follow-the-Leader schemes are discussed, and their online learning guarantees are extended to the case of dependent data. In applications, our proposed Ensemble Echo State Networks show significantly improved predictive performance compared to individual MFESN models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.