Papers
Topics
Authors
Recent
2000 character limit reached

A Domain-Adapted Lightweight Ensemble for Resource-Efficient Few-Shot Plant Disease Classification (2512.13428v1)

Published 15 Dec 2025 in cs.CV

Abstract: Accurate and timely identification of plant leaf diseases is essential for resilient and sustainable agriculture, yet most deep learning approaches rely on large annotated datasets and computationally intensive models that are unsuitable for data-scarce and resource-constrained environments. To address these challenges we present a few-shot learning approach within a lightweight yet efficient framework that combines domain-adapted MobileNetV2 and MobileNetV3 models as feature extractors, along with a feature fusion technique to generate robust feature representation. For the classification task, the fused features are passed through a Bi-LSTM classifier enhanced with attention mechanisms to capture sequential dependencies and focus on the most relevant features, thereby achieving optimal classification performance even in complex, real-world environments with noisy or cluttered backgrounds. The proposed framework was evaluated across multiple experimental setups, including both laboratory-controlled and field-captured datasets. On tomato leaf diseases from the PlantVillage dataset, it consistently improved performance across 1 to 15 shot scenarios, reaching 98.23+-0.33% at 15 shot, closely approaching the 99.98% SOTA benchmark achieved by a Transductive LSTM with attention, while remaining lightweight and mobile-friendly. Under real-world conditions using field images from the Dhan Shomadhan dataset, it maintained robust performance, reaching 69.28+-1.49% at 15-shot and demonstrating strong resilience to complex backgrounds. Notably, it also outperformed the previous SOTA accuracy of 96.0% on six diseases from PlantVillage, achieving 99.72% with only 15-shot learning. With a compact model size of approximately 40 MB and inference complexity of approximately 1.12 GFLOPs, this work establishes a scalable, mobile-ready foundation for precise plant disease diagnostics in data-scarce regions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.