Rethinking Physics-Informed Regression Beyond Training Loops and Bespoke Architectures (2512.13217v1)
Abstract: We revisit the problem of physics-informed regression, and propose a method that directly computes the state at the prediction point, simultaneously with the derivative and curvature information of the existing samples. We frame each prediction as a constrained optimisation problem, leveraging multivariate Taylor series expansions and explicitly enforcing physical laws. Each individual query can be processed with low computational cost without any pre- or re-training, in contrast to global function approximator-based solutions such as neural networks. Our comparative benchmarks on a reaction-diffusion system show competitive predictive accuracy relative to a neural network-based solution, while completely eliminating the need for long training loops, and remaining robust to changes in the sampling layout.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.