Papers
Topics
Authors
Recent
2000 character limit reached

Content Adaptive based Motion Alignment Framework for Learned Video Compression (2512.12936v1)

Published 15 Dec 2025 in cs.CV and cs.AI

Abstract: Recent advances in end-to-end video compression have shown promising results owing to their unified end-to-end learning optimization. However, such generalized frameworks often lack content-specific adaptation, leading to suboptimal compression performance. To address this, this paper proposes a content adaptive based motion alignment framework that improves performance by adapting encoding strategies to diverse content characteristics. Specifically, we first introduce a two-stage flow-guided deformable warping mechanism that refines motion compensation with coarse-to-fine offset prediction and mask modulation, enabling precise feature alignment. Second, we propose a multi-reference quality aware strategy that adjusts distortion weights based on reference quality, and applies it to hierarchical training to reduce error propagation. Third, we integrate a training-free module that downsamples frames by motion magnitude and resolution to obtain smooth motion estimation. Experimental results on standard test datasets demonstrate that our framework CAMA achieves significant improvements over state-of-the-art Neural Video Compression models, achieving a 24.95% BD-rate (PSNR) savings over our baseline model DCVC-TCM, while also outperforming reproduced DCVC-DC and traditional codec HM-16.25.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.