Papers
Topics
Authors
Recent
2000 character limit reached

Curió-Edu 7B: Examining Data Selection Impacts in LLM Continued Pretraining (2512.12770v1)

Published 14 Dec 2025 in cs.CL

Abstract: Continued pretraining extends a LLM's capabilities by further exposing it to additional data, often tailored to a specific linguistic or domain context. This strategy has emerged as an efficient alternative to full retraining when adapting general-purpose models to new settings. In this work, we investigate this paradigm through Curió 7B, a 7-billion-parameter model derived from LLaMA-2 and trained on 100 billion Portuguese tokens from the ClassiCC-PT corpus - the most extensive Portuguese-specific continued-pretraining effort above the three-billion-parameter scale to date. Beyond scale, we investigate whether quantity alone suffices or whether data quality plays a decisive role in linguistic adaptation. To this end, we introduce Curió-Edu 7B, a variant trained exclusively on the educational and STEM-filtered subset of the same corpus, totaling just 10 billion tokens. Despite using only 10% of the data and 20% of the computation, Curió-Edu 7B surpasses the full-corpus model in our evaluations, demonstrating that data selection can be fundamental even when adapting models with limited prior exposure to the target language. The developed models are available at https://huggingface.co/collections/ClassiCC-Corpus/curio-edu

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.