Papers
Topics
Authors
Recent
2000 character limit reached

Practical Hybrid Quantum Language Models with Observable Readout on Real Hardware (2512.12710v1)

Published 14 Dec 2025 in quant-ph and cs.LG

Abstract: Hybrid quantum-classical models represent a crucial step toward leveraging near-term quantum devices for sequential data processing. We present Quantum Recurrent Neural Networks (QRNNs) and Quantum Convolutional Neural Networks (QCNNs) as hybrid quantum LLMs, reporting the first empirical demonstration of generative language modeling trained and evaluated end-to-end on real quantum hardware. Our architecture combines hardware-optimized parametric quantum circuits with a lightweight classical projection layer, utilizing a multi-sample SPSA strategy to efficiently train quantum parameters despite hardware noise. To characterize the capabilities of these models, we introduce a synthetic dataset designed to isolate syntactic dependencies in a controlled, low-resource environment. Experiments on IBM Quantum processors reveal the critical trade-offs between circuit depth and trainability, demonstrating that while noise remains a significant factor, observable-based readout enables the successful learning of sequential patterns on NISQ devices. These results establish a rigorous engineering baseline for generative quantum natural language processing, validating the feasibility of training complex sequence models on current quantum hardware.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.