Papers
Topics
Authors
Recent
2000 character limit reached

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery (2512.12608v1)

Published 14 Dec 2025 in cs.CL and cs.AI

Abstract: LLMs excel at extracting common patterns from large-scale corpora, yet they struggle with rare, low-resource, or previously unseen scenarios-such as niche hardware deployment issues or irregular IoT device behaviors-because such cases are sparsely represented in training data. Moreover, LLMs rely primarily on implicit parametric memory, which limits their ability to explicitly acquire, recall, and refine methods, causing them to behave predominantly as intuition-driven predictors rather than deliberate, method-oriented learners. Inspired by how humans learn from rare experiences, this paper proposes a human-inspired learning framework that integrates two complementary mechanisms. The first, Obvious Record, explicitly stores cause--result (or question--solution) relationships as symbolic memory, enabling persistent learning even from single or infrequent encounters. The second, Maximum-Entropy Method Discovery, prioritizes and preserves methods with high semantic dissimilarity, allowing the system to capture diverse and underrepresented strategies that are typically overlooked by next-token prediction. Verification on a benchmark of 60 semantically diverse question--solution pairs demonstrates that the proposed entropy-guided approach achieves stronger coverage of unseen questions and significantly greater internal diversity than a random baseline, confirming its effectiveness in discovering more generalizable and human-inspired methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.