Papers
Topics
Authors
Recent
2000 character limit reached

Vision-Enhanced Large Language Models for High-Resolution Image Synthesis and Multimodal Data Interpretation (2512.12595v1)

Published 14 Dec 2025 in cs.CV

Abstract: This research introduces a transformative framework for integrating Vision-Enhanced LLMs with advanced transformer-based architectures to tackle challenges in high-resolution image synthesis and multimodal data interpretation. The proposed model incorporates a rectified flow mechanism that connects noise and data with linear paths, enabling efficient and high-quality generation. A bidirectional tokenization strategy is employed to seamlessly merge inputs from text, image, and video modalities, fostering a unified understanding across diverse data types. By embedding spatial-temporal features and leveraging a hybrid text-image sequence modeling approach, the framework achieves unparalleled fidelity in synthesized images and coherent multimodal representations. The architecture is optimized with a noise-aware learning algorithm, addressing discrepancies in noisy data distributions and improving generative performance under varying input conditions. Rigorous evaluations on benchmark datasets demonstrate a 25% increase in image resolution clarity and a 20% reduction in computational requirements compared to diffusion-based methods. Furthermore, the model exhibits robust scalability and adaptability, showcasing its potential in applications like autonomous systems, creative content generation, and advanced video analysis. This work underscores the role of vision-centric LLMs in redefining capabilities in computer vision and multimodal artificial intelligence.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.