Papers
Topics
Authors
Recent
2000 character limit reached

Cross-Modal Representational Knowledge Distillation for Enhanced Spike-Informed LFP Modeling (2512.12461v1)

Published 13 Dec 2025 in cs.LG, cs.AI, and q-bio.NC

Abstract: Local field potentials (LFPs) can be routinely recorded alongside spiking activity in intracortical neural experiments, measure a larger complementary spatiotemporal scale of brain activity for scientific inquiry, and can offer practical advantages over spikes, including greater long-term stability, robustness to electrode degradation, and lower power requirements. Despite these advantages, recent neural modeling frameworks have largely focused on spiking activity since LFP signals pose inherent modeling challenges due to their aggregate, population-level nature, often leading to lower predictive power for downstream task variables such as motor behavior. To address this challenge, we introduce a cross-modal knowledge distillation framework that transfers high-fidelity representational knowledge from pretrained multi-session spike transformer models to LFP transformer models. Specifically, we first train a teacher spike model across multiple recording sessions using a masked autoencoding objective with a session-specific neural tokenization strategy. We then align the latent representations of the student LFP model to those of the teacher spike model. Our results show that the Distilled LFP models consistently outperform single- and multi-session LFP baselines in both fully unsupervised and supervised settings, and can generalize to other sessions without additional distillation while maintaining superior performance. These findings demonstrate that cross-modal knowledge distillation is a powerful and scalable approach for leveraging high-performing spike models to develop more accurate LFP models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.