Learning Dynamics in Memristor-Based Equilibrium Propagation (2512.12428v1)
Abstract: Memristor-based in-memory computing has emerged as a promising paradigm to overcome the constraints of the von Neumann bottleneck and the memory wall by enabling fully parallelisable and energy-efficient vector-matrix multiplications. We investigate the effect of nonlinear, memristor-driven weight updates on the convergence behaviour of neural networks trained with equilibrium propagation (EqProp). Six memristor models were characterised by their voltage-current hysteresis and integrated into the EBANA framework for evaluation on two benchmark classification tasks. EqProp can achieve robust convergence under nonlinear weight updates, provided that memristors exhibit a sufficiently wide resistance range of at least an order of magnitude.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.