Papers
Topics
Authors
Recent
2000 character limit reached

CAR-CHASE: Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement (2512.12243v1)

Published 13 Dec 2025 in cs.RO

Abstract: Multi-Agent Path Finding (MAPF) for car-like robots, addressed by algorithms such as Conflict-Based Search with Continuous Time (CL-CBS), faces significant computational challenges due to expensive kinematic heuristic calculations. Traditional heuristic caching assumes that the heuristic function depends only on the state, which is incorrect in CBS where constraints from conflict resolution make the search space context-dependent. We propose \textbf{CAR-CHASE} (Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement), a novel approach that combines \textbf{conflict-aware heuristic caching} -- which caches heuristic values based on both state and relevant constraint context -- with an \textbf{adaptive hybrid heuristic} that intelligently switches between fast approximate and exact computations. Our key innovations are (1) a compact \emph{conflict fingerprint} that efficiently encodes which constraints affect a state's heuristic, (2) a relevance filter using spatial, temporal, and geometric criteria, and (3) an adaptive switching strategy with theoretical quality bounds. Experimental evaluation on 480 benchmark instances with varying agent counts (10 to 30) and obstacle densities (0\% and 50\%) demonstrates a geometric mean speedup of 2.46$\times$ over the baseline CL-CBS implementation while maintaining solution optimality. The optimizations improve success rate from 77.9\% to 84.8\% (+6.9 percentage points), reduce total runtime by 70.1\%, and enable solving 33 additional instances that previously timed out. Performance gains scale with problem complexity, reaching up to 4.06$\times$ speedup for challenging 30-agent obstacle scenarios. Our techniques are general and applicable to other CBS variants.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.