MixtureKit: A General Framework for Composing, Training, and Visualizing Mixture-of-Experts Models (2512.12121v1)
Abstract: We introduce MixtureKit, a modular open-source framework for constructing, training, and analyzing Mixture-of-Experts (MoE) models from arbitrary pre-trained or fine-tuned models. MixtureKit currently supports three complementary methods: (i) \emph{Traditional MoE}, which uses a single router per transformer block to select experts, (ii) \emph{BTX} (Branch-Train-Mix), which introduces separate routers for each specified sub-layer enabling fine-grained token routing, and (iii) \emph{BTS} (Branch-Train-Stitch), which keeps experts fully intact and introduces trainable stitch layers for controlled information exchange between hub and experts. MixtureKit automatically modifies the model configuration, patches decoder and causal LM classes, and saves a unified checkpoint ready for inference or fine-tuning. We further provide a visualization interface to inspect per-token routing decisions, expert weight distributions, and layer-wise contributions. Experiments with multilingual code-switched data (e.g. Arabic-Latin) show that a BTX-based model trained using MixtureKit can outperform baseline dense models on multiple benchmarks. We release MixtureKit as a practical foundation for research and development of MoE-based systems across diverse domains.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.