GaussianHeadTalk: Wobble-Free 3D Talking Heads with Audio Driven Gaussian Splatting (2512.10939v1)
Abstract: Speech-driven talking heads have recently emerged and enable interactive avatars. However, real-world applications are limited, as current methods achieve high visual fidelity but slow or fast yet temporally unstable. Diffusion methods provide realistic image generation, yet struggle with oneshot settings. Gaussian Splatting approaches are real-time, yet inaccuracies in facial tracking, or inconsistent Gaussian mappings, lead to unstable outputs and video artifacts that are detrimental to realistic use cases. We address this problem by mapping Gaussian Splatting using 3D Morphable Models to generate person-specific avatars. We introduce transformer-based prediction of model parameters, directly from audio, to drive temporal consistency. From monocular video and independent audio speech inputs, our method enables generation of real-time talking head videos where we report competitive quantitative and qualitative performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.