UrbanAI 2025 Challenge: Linear vs Transformer Models for Long-Horizon Exogenous Temperature Forecasting (2512.10866v1)
Abstract: We study long-horizon exogenous-only temperature forecasting - a challenging univariate setting where only the past values of the indoor temperature are used for prediction - using linear and Transformer-family models. We evaluate Linear, NLinear, DLinear, Transformer, Informer, and Autoformer under standardized train, validation, and test splits. Results show that linear baselines (Linear, NLinear, DLinear) consistently outperform more complex Transformer-family architectures, with DLinear achieving the best overall accuracy across all splits. These findings highlight that carefully designed linear models remain strong baselines for time series forecasting in challenging exogenous-only settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.