Papers
Topics
Authors
Recent
2000 character limit reached

Graph Laplacian Transformer with Progressive Sampling for Prostate Cancer Grading (2512.10808v1)

Published 11 Dec 2025 in cs.CV

Abstract: Prostate cancer grading from whole-slide images (WSIs) remains a challenging task due to the large-scale nature of WSIs, the presence of heterogeneous tissue structures, and difficulty of selecting diagnostically relevant regions. Existing approaches often rely on random or static patch selection, leading to the inclusion of redundant or non-informative regions that degrade performance. To address this, we propose a Graph Laplacian Attention-Based Transformer (GLAT) integrated with an Iterative Refinement Module (IRM) to enhance both feature learning and spatial consistency. The IRM iteratively refines patch selection by leveraging a pretrained ResNet50 for local feature extraction and a foundation model in no-gradient mode for importance scoring, ensuring only the most relevant tissue regions are preserved. The GLAT models tissue-level connectivity by constructing a graph where patches serve as nodes, ensuring spatial consistency through graph Laplacian constraints and refining feature representations via a learnable filtering mechanism that enhances discriminative histological structures. Additionally, a convex aggregation mechanism dynamically adjusts patch importance to generate a robust WSI-level representation. Extensive experiments on five public and one private dataset demonstrate that our model outperforms state-of-the-art methods, achieving higher performance and spatial consistency while maintaining computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.