Papers
Topics
Authors
Recent
2000 character limit reached

Interpretable and Steerable Concept Bottleneck Sparse Autoencoders (2512.10805v1)

Published 11 Dec 2025 in cs.LG and cs.CV

Abstract: Sparse autoencoders (SAEs) promise a unified approach for mechanistic interpretability, concept discovery, and model steering in LLMs and LVLMs. However, realizing this potential requires that the learned features be both interpretable and steerable. To that end, we introduce two new computationally inexpensive interpretability and steerability metrics and conduct a systematic analysis on LVLMs. Our analysis uncovers two observations; (i) a majority of SAE neurons exhibit either low interpretability or low steerability or both, rendering them ineffective for downstream use; and (ii) due to the unsupervised nature of SAEs, user-desired concepts are often absent in the learned dictionary, thus limiting their practical utility. To address these limitations, we propose Concept Bottleneck Sparse Autoencoders (CB-SAE) - a novel post-hoc framework that prunes low-utility neurons and augments the latent space with a lightweight concept bottleneck aligned to a user-defined concept set. The resulting CB-SAE improves interpretability by +32.1% and steerability by +14.5% across LVLMs and image generation tasks. We will make our code and model weights available.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.