Papers
Topics
Authors
Recent
2000 character limit reached

ESS: An Offload-Centric Latent-Cache Management Architecture for DeepSeek-V3.2-Exp

Published 11 Dec 2025 in cs.DC | (2512.10576v1)

Abstract: DeepSeek-V3.2-Exp introduces a sparse attention mechanism that significantly reduces inference latency in long-context scenarios. Although the overall throughput has improved greatly, the Decode-stage of PD disaggregation remains to be a major bottleneck. This bottleneck primarily stems from the conflict between linear growth of Latent-Cache with sequence length and the limited GPU memory capacity, which constrains the feasible batch-size and thereby suppresses Decode-stage throughput. To address this challenge, we propose ESS (Extended Sparse Server), an offload-centric system design tailored for DeepSeek-V3.2-Exp. ESS selectively offloads Latent-Cache to CPU memory while preserving latency-critical components on GPU. By freeing up GPU memory, ESS effectively decoupling batch-size scaling from GPU memory constraints. This design significantly improves Decode-stage throughput, thereby reducing deployment costs in real-world settings. Our high-fidelity simulations show that ESS delivers 69.4\% throughput improvement at 32K context length and up to 123\% throughput improvement at 128K, demonstrating its effectiveness for large-context inference workloads. These results highlight ESS as a practical and scalable solution for long-context LLM serving.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.