Papers
Topics
Authors
Recent
2000 character limit reached

Causal Reasoning Favors Encoders: On The Limits of Decoder-Only Models (2512.10561v1)

Published 11 Dec 2025 in cs.CL and cs.LG

Abstract: In context learning (ICL) underpins recent advances in LLMs, although its role and performance in causal reasoning remains unclear. Causal reasoning demands multihop composition and strict conjunctive control, and reliance on spurious lexical relations of the input could provide misleading results. We hypothesize that, due to their ability to project the input into a latent space, encoder and encoder decoder architectures are better suited for said multihop conjunctive reasoning versus decoder only models. To do this, we compare fine-tuned versions of all the aforementioned architectures with zero and few shot ICL in both natural language and non natural language scenarios. We find that ICL alone is insufficient for reliable causal reasoning, often overfocusing on irrelevant input features. In particular, decoder only models are noticeably brittle to distributional shifts, while finetuned encoder and encoder decoder models can generalize more robustly across our tests, including the non natural language split. Both architectures are only matched or surpassed by decoder only architectures at large scales. We conclude by noting that for cost effective, short horizon robust causal reasoning, encoder or encoder decoder architectures with targeted finetuning are preferable.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.