Papers
Topics
Authors
Recent
2000 character limit reached

Mode-Seeking for Inverse Problems with Diffusion Models (2512.10524v1)

Published 11 Dec 2025 in cs.LG and cs.CV

Abstract: A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can be computationally demanding. In this work, we propose the variational mode-seeking loss (VML), which, when minimized during each reverse diffusion step, guides the generated sample towards the MAP estimate. VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived and need not be approximated. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems, and validate its efficacy over existing methods in both performance and computational time, through extensive experiments on diverse image-restoration tasks across multiple datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.