Papers
Topics
Authors
Recent
2000 character limit reached

Boosting RL-Based Visual Reasoning with Selective Adversarial Entropy Intervention (2512.10414v1)

Published 11 Dec 2025 in cs.AI

Abstract: Recently, reinforcement learning (RL) has become a common choice in enhancing the reasoning capabilities of vision-LLMs (VLMs). Considering existing RL- based finetuning methods, entropy intervention turns out to be an effective way to benefit exploratory ability, thereby improving policy performance. Notably, most existing stud- ies intervene in entropy by simply controlling the update of specific tokens during policy optimization of RL. They ig- nore the entropy intervention during the RL sampling that can boost the performance of GRPO by improving the di- versity of responses. In this paper, we propose Selective- adversarial Entropy Intervention, namely SaEI, which en- hances policy entropy by distorting the visual input with the token-selective adversarial objective coming from the en- tropy of sampled responses. Specifically, we first propose entropy-guided adversarial sampling (EgAS) that formu- lates the entropy of sampled responses as an adversarial ob- jective. Then, the corresponding adversarial gradient can be used to attack the visual input for producing adversarial samples, allowing the policy model to explore a larger an- swer space during RL sampling. Then, we propose token- selective entropy computation (TsEC) to maximize the ef- fectiveness of adversarial attack in EgAS without distorting factual knowledge within VLMs. Extensive experiments on both in-domain and out-of-domain datasets show that our proposed method can greatly improve policy exploration via entropy intervention, to boost reasoning capabilities. Code will be released once the paper is accepted.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.