Papers
Topics
Authors
Recent
2000 character limit reached

FlipLLM: Efficient Bit-Flip Attacks on Multimodal LLMs using Reinforcement Learning (2512.09872v1)

Published 10 Dec 2025 in cs.CR and cs.AI

Abstract: Generative Artificial Intelligence models, such as LLMs and Large Vision Models (VLMs), exhibit state-of-the-art performance but remain vulnerable to hardware-based threats, specifically bit-flip attacks (BFAs). Existing BFA discovery methods lack generalizability and struggle to scale, often failing to analyze the vast parameter space and complex interdependencies of modern foundation models in a reasonable time. This paper proposes FlipLLM, a reinforcement learning (RL) architecture-agnostic framework that formulates BFA discovery as a sequential decision-making problem. FlipLLM combines sensitivity-guided layer pruning with Q-learning to efficiently identify minimal, high-impact bit sets that can induce catastrophic failure. We demonstrate the effectiveness and generalizability of FlipLLM by applying it to a diverse set of models, including prominent text-only LLMs (GPT-2 Large, LLaMA 3.1 8B, and DeepSeek-V2 7B), VLMs such as LLaVA 1.6, and datasets, such as MMLU, MMLU-Pro, VQAv2, and TextVQA. Our results show that FlipLLM can identify critical bits that are vulnerable to BFAs up to 2.5x faster than SOTA methods. We demonstrate that flipping the FlipLLM-identified bits plummets the accuracy of LLaMA 3.1 8B from 69.9% to ~0.2%, and for LLaVA's VQA score from 78% to almost 0%, by flipping as few as 5 and 7 bits, respectively. Further analysis reveals that applying standard hardware protection mechanisms, such as ECC SECDED, to the FlipLLM-identified bit locations completely mitigates the BFA impact, demonstrating the practical value of our framework in guiding hardware-level defenses. FlipLLM offers the first scalable and adaptive methodology for exploring the BFA vulnerability of both language and multimodal foundation models, paving the way for comprehensive hardware-security evaluation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.