Papers
Topics
Authors
Recent
2000 character limit reached

Neurosymbolic Information Extraction from Transactional Documents

Published 10 Dec 2025 in cs.CL | (2512.09666v1)

Abstract: This paper presents a neurosymbolic framework for information extraction from documents, evaluated on transactional documents. We introduce a schema-based approach that integrates symbolic validation methods to enable more effective zero-shot output and knowledge distillation. The methodology uses LLMs to generate candidate extractions, which are then filtered through syntactic-, task-, and domain-level validation to ensure adherence to domain-specific arithmetic constraints. Our contributions include a comprehensive schema for transactional documents, relabeled datasets, and an approach for generating high-quality labels for knowledge distillation. Experimental results demonstrate significant improvements in $F_1$-scores and accuracy, highlighting the effectiveness of neurosymbolic validation in transactional document processing.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.