Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Sequences: A Benchmark for Atomic Hand-Object Interaction Using a Static RNN Encoder

Published 10 Dec 2025 in cs.CV | (2512.09626v1)

Abstract: Reliably predicting human intent in hand-object interactions is an open challenge for computer vision. Our research concentrates on a fundamental sub-problem: the fine-grained classification of atomic interaction states, namely 'approaching', 'grabbing', and 'holding'. To this end, we introduce a structured data engineering process that converts raw videos from the MANIAC dataset into 27,476 statistical-kinematic feature vectors. Each vector encapsulates relational and dynamic properties from a short temporal window of motion. Our initial hypothesis posited that sequential modeling would be critical, leading us to compare static classifiers (MLPs) against temporal models (RNNs). Counter-intuitively, the key discovery occurred when we set the sequence length of a Bidirectional RNN to one (seq_length=1). This modification converted the network's function, compelling it to act as a high-capacity static feature encoder. This architectural change directly led to a significant accuracy improvement, culminating in a final score of 97.60%. Of particular note, our optimized model successfully overcame the most challenging transitional class, 'grabbing', by achieving a balanced F1-score of 0.90. These findings provide a new benchmark for low-level hand-object interaction recognition using structured, interpretable features and lightweight architectures.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.