Papers
Topics
Authors
Recent
2000 character limit reached

On the analogue of Esperet's conjecture: Characterizing hereditary classes (2512.09176v1)

Published 9 Dec 2025 in math.CO

Abstract: In the paper [J. Graph Theory (2023) 102:458-471, the Esperet's conjecture has been posed: Every $χ$-bounded hereditary class is poly-$χ$-bounded]. This conjecture was first posed in [Habilitation Thesis, Université Grenoble Alpes, 24, 2017]. This is adapted from the Gyárfás--Sumner's conjecture which has been asserted in [The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley & Sons, New York, 1981, pp. 557-576]. Although the Esperet's conjecture is false in general, in this study we consider an analogue of Esperet's conjecture as follows: Let $C$ be a hereditary class of graphs, and $d \ge 1$. Suppose that there is a function $f$ such that $χ(G) \le f(τ_d(G))$ for each $G \in C$. Can we always choose $f$ to be a polynomial? We investigate this conjecture by focusing on specific classes of graphs. This work identifies hereditary graph classes that do not contain specific induced subdivisions of claws and confirms that they adhere to the stated conjecture.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.