Papers
Topics
Authors
Recent
2000 character limit reached

Learning Robust Representations for Malicious Content Detection via Contrastive Sampling and Uncertainty Estimation (2512.08969v1)

Published 1 Dec 2025 in cs.LG and cs.AI

Abstract: We propose the Uncertainty Contrastive Framework (UCF), a Positive-Unlabeled (PU) representation learning framework that integrates uncertainty-aware contrastive loss, adaptive temperature scaling, and a self-attention-guided LSTM encoder to improve classification under noisy and imbalanced conditions. UCF dynamically adjusts contrastive weighting based on sample confidence, stabilizes training using positive anchors, and adapts temperature parameters to batch-level variability. Applied to malicious content classification, UCF-generated embeddings enable multiple traditional classifiers to achieve more than 93.38% accuracy, precision above 0.93, and near-perfect recall, with minimal false negatives and competitive ROC-AUC scores. Visual analyses confirm clear separation between positive and unlabeled instances, highlighting the framework's ability to produce calibrated, discriminative embeddings. These results position UCF as a robust and scalable solution for PU learning in high-stakes domains such as cybersecurity and biomedical text mining.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.