Papers
Topics
Authors
Recent
2000 character limit reached

rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection (2512.08300v1)

Published 9 Dec 2025 in cs.AI

Abstract: LLMs are post-trained through reinforcement learning (RL) to evolve into Reasoning LLMs (RLMs), where the hallmark of this advanced reasoning is ``aha'' moments when they start to perform strategies, such as self-reflection and deep thinking, within chain of thoughts (CoTs). Motivated by this, this paper proposes a novel reinforced strategy injection mechanism (rSIM), that enables any LLM to become an RLM by employing a small planner to guide the LLM's CoT through the adaptive injection of reasoning strategies. To achieve this, the planner (leader agent) is jointly trained with an LLM (follower agent) using multi-agent RL (MARL), based on a leader-follower framework and straightforward rule-based rewards. Experimental results show that rSIM enables Qwen2.5-0.5B to become an RLM and significantly outperform Qwen2.5-14B. Moreover, the planner is generalizable: it only needs to be trained once and can be applied as a plug-in to substantially improve the reasoning capabilities of existing LLMs. In addition, the planner supports continual learning across various tasks, allowing its planning abilities to gradually improve and generalize to a wider range of problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.