Papers
Topics
Authors
Recent
Search
2000 character limit reached

The State-Operator Clifford Compatibility: A Real Algebraic Framework for Quantum Information

Published 5 Dec 2025 in quant-ph | (2512.07902v1)

Abstract: We revisit the Pauli-Clifford connection to introduce a real, grade-preserving algebraic framework for $N$-qubit quantum computation based on the tensor product structure $C\ell_{2,0}(\mathbb{R}){\otimes N}$. In this setting the bivector $J = e_{12}$ satisfies $J{2} = -1$ and supplies the complex structure on a minimal left ideal via right-multiplication, while Pauli operations arise as left actions of suitable Clifford elements. Adopting a canonical stabilizer mapping, the $N$-qubit computational basis state $|0\cdots 0\rangle$ is represented natively by a tensor product of real algebraic idempotents. This structural choice leads to a State-Operator Clifford Compatibility law that is stable under the geometric product for $N$ qubits and aligns symbolic Clifford multiplication with unitary evolution on the Hilbert space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.