The State-Operator Clifford Compatibility: A Real Algebraic Framework for Quantum Information
Abstract: We revisit the Pauli-Clifford connection to introduce a real, grade-preserving algebraic framework for $N$-qubit quantum computation based on the tensor product structure $C\ell_{2,0}(\mathbb{R}){\otimes N}$. In this setting the bivector $J = e_{12}$ satisfies $J{2} = -1$ and supplies the complex structure on a minimal left ideal via right-multiplication, while Pauli operations arise as left actions of suitable Clifford elements. Adopting a canonical stabilizer mapping, the $N$-qubit computational basis state $|0\cdots 0\rangle$ is represented natively by a tensor product of real algebraic idempotents. This structural choice leads to a State-Operator Clifford Compatibility law that is stable under the geometric product for $N$ qubits and aligns symbolic Clifford multiplication with unitary evolution on the Hilbert space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.