Optimal Auction Design under Costly Learning (2512.07798v1)
Abstract: We study optimal auction design in an independent private values environment where bidders can endogenously -- but at a cost -- improve information about their own valuations. The optimal mechanism is two-stage: at stage-1 bidders register an information acquisition plan and pay a transfer; at stage-2 they bid, and allocation and payments are determined. We show that the revenue-optimal stage-2 rule is the Vickrey--Clarke--Groves (VCG) mechanism, while stage-1 transfers implement the optimal screening of types and absorb information rents consistent with incentive compatibility and participation. By committing to VCG ex post, the pre-auction information game becomes a potential game, so equilibrium information choices maximize expected welfare; the stage-1 fee schedule then transfers an optimal amount of payoff without conditioning on unverifiable cost scales. The design is robust to asymmetric primitives and accommodates a wide range of information technologies, providing a simple implementation that unifies efficiency and optimal revenue in environments with endogenous information acquisition.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.