Nahm sum identities for Cartan matrices of type $D_k$ (2512.07790v1)
Abstract: Around 2007, Warnaar proved four identities related to Nahm sums associated with twice the inverse of the Cartan matrix of type $D_k$. Three of these had been conjectured by Flohr, Grabow, and Koehn, while special cases of two of the identities were first conjectured in 1993 by Kedem, Klassen, McCoy, and Melzer. Warnaar's proof relies on a multi-sum identity from Andrews' proof of the Andrews-Gordon identities. We give a new proof of all four identities using the theory of Bailey pairs. Furthermore, we establish a parametric generalization of two of the identities and provide two distinct proofs of this generalization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.