Papers
Topics
Authors
Recent
2000 character limit reached

Obstacle Avoidance of UAV in Dynamic Environments Using Direction and Velocity-Adaptive Artificial Potential Field (2512.07609v1)

Published 8 Dec 2025 in eess.SY and cs.RO

Abstract: The conventional Artificial Potential Field (APF) is fundamentally limited by the local minima issue and its inability to account for the kinematics of moving obstacles. This paper addresses the critical challenge of autonomous collision avoidance for Unmanned Aerial Vehicles (UAVs) operating in dynamic and cluttered airspace by proposing a novel Direction and Relative Velocity Weighted Artificial Potential Field (APF). In this approach, a bounded weighting function, $ω(θ,v_{e})$, is introduced to dynamically scale the repulsive potential based on the direction and velocity of the obstacle relative to the UAV. This robust APF formulation is integrated within a Model Predictive Control (MPC) framework to generate collision-free trajectories while adhering to kinematic constraints. Simulation results demonstrate that the proposed method effectively resolves local minima and significantly enhances safety by enabling smooth, predictive avoidance maneuvers. The system ensures superior path integrity and reliable performance, confirming its viability for autonomous navigation in complex environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.