Communication-Efficient Serving for Video Diffusion Models with Latent Parallelism
Abstract: Video diffusion models (VDMs) perform attention computation over the 3D spatio-temporal domain. Compared to LLMs processing 1D sequences, their memory consumption scales cubically, necessitating parallel serving across multiple GPUs. Traditional parallelism strategies partition the computational graph, requiring frequent high-dimensional activation transfers that create severe communication bottlenecks. To tackle this issue, we exploit the local spatio-temporal dependencies inherent in the diffusion denoising process and propose Latent Parallelism (LP), the first parallelism strategy tailored for VDM serving. \textcolor{black}{LP decomposes the global denoising problem into parallelizable sub-problems by dynamically rotating the partitioning dimensions (temporal, height, and width) within the compact latent space across diffusion timesteps, substantially reducing the communication overhead compared to prevailing parallelism strategies.} To ensure generation quality, we design a patch-aligned overlapping partition strategy that matches partition boundaries with visual patches and a position-aware latent reconstruction mechanism for smooth stitching. Experiments on three benchmarks demonstrate that LP reduces communication overhead by up to 97\% over baseline methods while maintaining comparable generation quality. As a non-intrusive plug-in paradigm, LP can be seamlessly integrated with existing parallelism strategies, enabling efficient and scalable video generation services.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.