Papers
Topics
Authors
Recent
Search
2000 character limit reached

FlowLPS: Langevin-Proximal Sampling for Flow-based Inverse Problem Solvers

Published 8 Dec 2025 in cs.LG, cs.AI, and cs.CV | (2512.07150v1)

Abstract: Deep generative models have become powerful priors for solving inverse problems, and various training-free methods have been developed. However, when applied to latent flow models, existing methods often fail to converge to the posterior mode or suffer from manifold deviation within latent spaces. To mitigate this, here we introduce a novel training-free framework, FlowLPS, that solves inverse problems with pretrained flow models via a Langevin Proximal Sampling (LPS) strategy. Our method integrates Langevin dynamics for manifold-consistent exploration with proximal optimization for precise mode seeking, achieving a superior balance between reconstruction fidelity and perceptual quality across multiple inverse tasks on FFHQ and DIV2K, outperforming state of the art inverse solvers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.