Papers
Topics
Authors
Recent
2000 character limit reached

Dual Refinement Cycle Learning: Unsupervised Text Classification of Mamba and Community Detection on Text Attributed Graph

Published 8 Dec 2025 in cs.LG | (2512.07100v1)

Abstract: Pretrained LLMs offer strong text understanding capabilities but remain difficult to deploy in real-world text-attributed networks due to their heavy dependence on labeled data. Meanwhile, community detection methods typically ignore textual semantics, limiting their usefulness in downstream applications such as content organization, recommendation, and risk monitoring. To overcome these limitations, we present Dual Refinement Cycle Learning (DRCL), a fully unsupervised framework designed for practical scenarios where no labels or category definitions are available. DRCL integrates structural and semantic information through a warm-start initialization and a bidirectional refinement cycle between a GCN-based Community Detection Module (GCN-CDM) and a Text Semantic Modeling Module (TSMM). The two modules iteratively exchange pseudo-labels, allowing semantic cues to enhance structural clustering and structural patterns to guide text representation learning without manual supervision. Across several text-attributed graph datasets, DRCL consistently improves the structural and semantic quality of discovered communities. Moreover, a Mamba-based classifier trained solely from DRCL's community signals achieves accuracy comparable to supervised models, demonstrating its potential for deployment in large-scale systems where labeled data are scarce or costly.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.