Papers
Topics
Authors
Recent
2000 character limit reached

Visual Function Profiles via Multi-Path Aggregation Reveal Neuron-Level Responses in the Drosophila Brain

Published 7 Dec 2025 in q-bio.NC and q-bio.QM | (2512.06934v1)

Abstract: Accurately predicting individual neurons' responses and spatial functional properties in complex visual tasks remains a key challenge in understanding neural computation. Existing whole-brain connectome models of Drosophila often rely on parameter assumptions or deep learning approaches, yet remain limited in their ability to reliably predict dynamic neuronal responses. We introduce a Multi-Path Aggregation (MPA) framework, based on neural network steady-state theory, to build a whole-brain Visual Function Profiles (VFP) of Drosophila neurons and predict their responses under diverse visual tasks. Unlike conventional methods relying on redundant parameters, MPA combines visual input features with the whole-brain connectome topology. It uses adjacency matrix powers and finite-path optimization to efficiently predict neuronal function, including ON/OFF polarity, direction selectivity, and responses to complex visual stimuli. Our model achieves a Pearson correlation of 0.84+/-0.12 for ON/OFF responses, outperforming existing methods (0.33+/-0.59), and accurately captures neuron functional properties, including luminance and direction preferences, while allowing single-neuron or population-level blockade simulations. Replacing CNN modules with VFP-derived Lobula Columnar(LC) population responses in a Drosophila simulation enables successful navigation and obstacle avoidance, demonstrating the model's effectiveness in guiding embodied behavior. This study establishes a "connectome-functional profile-behavior" framework, offering a whole-brain quantitative tool to study Drosophila visual computation and a neuron-level guide for brain-inspired intelligence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.