VisChainBench: A Benchmark for Multi-Turn, Multi-Image Visual Reasoning Beyond Language Priors (2512.06759v1)
Abstract: Understanding multi-image, multi-turn scenarios is a critical yet underexplored capability for Large Vision-LLMs (LVLMs). Existing benchmarks predominantly focus on static or horizontal comparisons -- e.g., spotting visual differences or assessing appropriateness -- while relying heavily on language cues. Such settings overlook progressive, context-dependent reasoning and the challenge of visual-to-visual inference. To bridge this gap, we present VisChainBench, a large-scale benchmark designed to rigorously evaluate LVLMs' ability to perform multi-step visual reasoning across sequential, interdependent tasks with minimal language guidance. VisChainBench contains 1,457 tasks spanning over 20,000 images across three diverse domains (e.g., daily scenarios, engineering troubleshooting), structured to mimic real-world decision-making processes. Uniquely, the benchmark is constructed using a multi-agent generation pipeline, ensuring high visual diversity and controlled language bias. All the benchmark data and code for benchmark construction are available for viewing and download via following Link: https://huggingface.co/datasets/eyehole/VisChainBench
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.