Model-Less Feedback Control of Space-based Continuum Manipulators using Backbone Tension Optimization (2512.06754v1)
Abstract: Continuum manipulators offer intrinsic dexterity and safe geometric compliance for navigation within confined and obstacle-rich environments. However, their infinite-dimensional backbone deformation, unmodeled internal friction, and configuration-dependent stiffness fundamentally limit the reliability of model-based kinematic formulations, resulting in inaccurate Jacobian predictions, artificial singularities, and unstable actuation behavior. Motivated by these limitations, this work presents a complete model-less control framework that bypasses kinematic modeling by using an empirically initialized Jacobian refined online through differential convex updates. Tip motion is generated via a real-time quadratic program that computes actuator increments while enforcing tendon slack avoidance and geometric limits. A backbone tension optimization term is introduced in this paper to regulate axial loading and suppress co-activation compression. The framework is validated across circular, pentagonal, and square trajectories, demonstrating smooth convergence, stable tension evolution, and sub-millimeter steady-state accuracy without any model calibration or parameter identification. These results establish the proposed controller as a scalable alternative to model-dependent continuum manipulation in a constrained environment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.