Papers
Topics
Authors
Recent
2000 character limit reached

FedSCAl: Leveraging Server and Client Alignment for Unsupervised Federated Source-Free Domain Adaptation (2512.06738v1)

Published 7 Dec 2025 in cs.CV

Abstract: We address the Federated source-Free Domain Adaptation (FFreeDA) problem, with clients holding unlabeled data with significant inter-client domain gaps. The FFreeDA setup constrains the FL frameworks to employ only a pre-trained server model as the setup restricts access to the source dataset during the training rounds. Often, this source domain dataset has a distinct distribution to the clients' domains. To address the challenges posed by the FFreeDA setup, adaptation of the Source-Free Domain Adaptation (SFDA) methods to FL struggles with client-drift in real-world scenarios due to extreme data heterogeneity caused by the aforementioned domain gaps, resulting in unreliable pseudo-labels. In this paper, we introduce FedSCAl, an FL framework leveraging our proposed Server-Client Alignment (SCAl) mechanism to regularize client updates by aligning the clients' and server model's predictions. We observe an improvement in the clients' pseudo-labeling accuracy post alignment, as the SCAl mechanism helps to mitigate the client-drift. Further, we present extensive experiments on benchmark vision datasets showcasing how FedSCAl consistently outperforms state-of-the-art FL methods in the FFreeDA setup for classification tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.