Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Interpretability of AR-SSVEP-Based Motor Intention Recognition via CNN-BiLSTM and SHAP Analysis on EEG Data (2512.06730v1)

Published 7 Dec 2025 in cs.LG and cs.CV

Abstract: Patients with motor dysfunction show low subjective engagement in rehabilitation training. Traditional SSVEP-based brain-computer interface (BCI) systems rely heavily on external visual stimulus equipment, limiting their practicality in real-world settings. This study proposes an augmented reality steady-state visually evoked potential (AR-SSVEP) system to address the lack of patient initiative and the high workload on therapists. Firstly, we design four HoloLens 2-based EEG classes and collect EEG data from seven healthy subjects for analysis. Secondly, we build upon the conventional CNN-BiLSTM architecture by integrating a multi-head attention mechanism (MACNN-BiLSTM). We extract ten temporal-spectral EEG features and feed them into a CNN to learn high-level representations. Then, we use BiLSTM to model sequential dependencies and apply a multi-head attention mechanism to highlight motor-intention-related patterns. Finally, the SHAP (SHapley Additive exPlanations) method is applied to visualize EEG feature contributions to the neural network's decision-making process, enhancing the model's interpretability. These findings enhance real-time motor intention recognition and support recovery in patients with motor impairments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.