Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis (2512.06681v1)
Abstract: We present a mechanistic interpretability study of GPT-2 that causally examines how sentiment information is processed across its transformer layers. Using systematic activation patching across all 12 layers, we test the hypothesized two-stage sentiment architecture comprising early lexical detection and mid-layer contextual integration. Our experiments confirm that early layers (0-3) act as lexical sentiment detectors, encoding stable, position specific polarity signals that are largely independent of context. However, all three contextual integration hypotheses: Middle Layer Concentration, Phenomenon Specificity, and Distributed Processing are falsified. Instead of mid-layer specialization, we find that contextual phenomena such as negation, sarcasm, domain shifts etc. are integrated primarily in late layers (8-11) through a unified, non-modular mechanism. These experimental findings provide causal evidence that GPT-2's sentiment computation differs from the predicted hierarchical pattern, highlighting the need for further empirical characterization of contextual integration in LLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.