Papers
Topics
Authors
Recent
2000 character limit reached

CMV-Fuse: Cross Modal-View Fusion of AMR, Syntax, and Knowledge Representations for Aspect Based Sentiment Analysis (2512.06679v1)

Published 7 Dec 2025 in cs.CL

Abstract: Natural language understanding inherently depends on integrating multiple complementary perspectives spanning from surface syntax to deep semantics and world knowledge. However, current Aspect-Based Sentiment Analysis (ABSA) systems typically exploit isolated linguistic views, thereby overlooking the intricate interplay between structural representations that humans naturally leverage. We propose CMV-Fuse, a Cross-Modal View fusion framework that emulates human language processing by systematically combining multiple linguistic perspectives. Our approach systematically orchestrates four linguistic perspectives: Abstract Meaning Representations, constituency parsing, dependency syntax, and semantic attention, enhanced with external knowledge integration. Through hierarchical gated attention fusion across local syntactic, intermediate semantic, and global knowledge levels, CMV-Fuse captures both fine-grained structural patterns and broad contextual understanding. A novel structure aware multi-view contrastive learning mechanism ensures consistency across complementary representations while maintaining computational efficiency. Extensive experiments demonstrate substantial improvements over strong baselines on standard benchmarks, with analysis revealing how each linguistic view contributes to more robust sentiment analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.