Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Robustness: A New Approach to Evaluating Feature Attribution Methods (2512.06665v1)

Published 7 Dec 2025 in cs.LG, cs.AI, and cs.CV

Abstract: This paper studies the robustness of feature attribution methods for deep neural networks. It challenges the current notion of attributional robustness that largely ignores the difference in the model's outputs and introduces a new way of evaluating the robustness of attribution methods. Specifically, we propose a new definition of similar inputs, a new robustness metric, and a novel method based on generative adversarial networks to generate these inputs. In addition, we present a comprehensive evaluation with existing metrics and state-of-the-art attribution methods. Our findings highlight the need for a more objective metric that reveals the weaknesses of an attribution method rather than that of the neural network, thus providing a more accurate evaluation of the robustness of attribution methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.