Teaching large language models to see in radar: aspect-distributed prototypes for few-shot HRRP ATR (2512.06617v1)
Abstract: High-resolution range profiles (HRRPs) play a critical role in automatic target recognition (ATR) due to their richinformationregarding target scattering centers (SCs), which encapsulate the geometric and electromagnetic characteristics of thetarget.Under few-shot circumstances, traditional learning-based methods often suffer from overfitting and struggle togeneralizeeffectively. The recently proposed HRRPLLM, which leverages the in-context learning (ICL) capabilities of largelanguagemodels (LLMs) for one-shot HRRP ATR, is limited in few-shot scenarios. This limitation arises because it primarilyutilizesthe distribution of SCs for recognition while neglecting the variance of the samples caused by aspect sensitivity. Thispaperproposes a straightforward yet effective Aspect-Distributed Prototype (ADP) strategy for LLM-based ATRunder few-shotconditions to enhance aspect robustness. Experiments conducted on both simulated and measured aircraft electromagneticdatasets demonstrate that the proposed method significantly outperforms current benchmarks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.