Papers
Topics
Authors
Recent
2000 character limit reached

Proof of Concept for Mammography Classification with Enhanced Compactness and Separability Modules (2512.06575v1)

Published 6 Dec 2025 in cs.CV and cs.LG

Abstract: This study presents a validation and extension of a recent methodological framework for medical image classification. While an improved ConvNeXt Tiny architecture, integrating Global Average and Max Pooling fusion (GAGM), lightweight channel attention (SEVector), and Feature Smoothing Loss (FSL), demonstrated promising results on Alzheimer MRI under CPU friendly conditions, our work investigates its transposability to mammography classification. Using a Kaggle dataset that consolidates INbreast, MIAS, and DDSM mammography collections, we compare a baseline CNN, ConvNeXt Tiny, and InceptionV3 backbones enriched with GAGM and SEVector modules. Results confirm the effectiveness of GAGM and SEVector in enhancing feature discriminability and reducing false negatives, particularly for malignant cases. In our experiments, however, the Feature Smoothing Loss did not yield measurable improvements under mammography classification conditions, suggesting that its effectiveness may depend on specific architectural and computational assumptions. Beyond validation, our contribution extends the original framework through multi metric evaluation (macro F1, per class recall variance, ROC/AUC), feature interpretability analysis (Grad CAM), and the development of an interactive dashboard for clinical exploration. As a perspective, we highlight the need to explore alternative approaches to improve intra class compactness and inter class separability, with the specific goal of enhancing the distinction between malignant and benign cases in mammography classification.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.