Papers
Topics
Authors
Recent
2000 character limit reached

GNC-Pose: Geometry-Aware GNC-PnP for Accurate 6D Pose Estimation (2512.06565v1)

Published 6 Dec 2025 in cs.CV

Abstract: We present GNC-Pose, a fully learning-free monocular 6D object pose estimation pipeline for textured objects that combines rendering-based initialization, geometry-aware correspondence weighting, and robust GNC optimization. Starting from coarse 2D-3D correspondences obtained through feature matching and rendering-based alignment, our method builds upon the Graduated Non-Convexity (GNC) principle and introduces a geometry-aware, cluster-based weighting mechanism that assigns robust per point confidence based on the 3D structural consistency of the model. This geometric prior and weighting strategy significantly stabilizes the optimization under severe outlier contamination. A final LM refinement further improve accuracy. We tested GNC-Pose on The YCB Object and Model Set, despite requiring no learned features, training data, or category-specific priors, GNC-Pose achieves competitive accuracy compared with both learning-based and learning-free methods, and offers a simple, robust, and practical solution for learning-free 6D pose estimation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.