Papers
Topics
Authors
Recent
2000 character limit reached

Approximate Multiplier Induced Error Propagation in Deep Neural Networks (2512.06537v1)

Published 6 Dec 2025 in cs.AR and cs.LG

Abstract: Deep Neural Networks (DNNs) rely heavily on dense arithmetic operations, motivating the use of Approximate Multipliers (AxMs) to reduce energy consumption in hardware accelerators. However, a rigorous mathematical characterization of how AxMs error distributions influence DNN accuracy remains underdeveloped. This work presents an analytical framework that connects the statistical error moments of an AxM to the induced distortion in General Matrix Multiplication (GEMM). Using the Frobenius norm of the resulting error matrix, we derive a closed form expression for practical DNN dimensions that demonstrates the distortion is predominantly governed by the multiplier mean error (bias). To evaluate this model in realistic settings, we incorporate controlled error injection into GEMM and convolution layers and examine its effect on ImageNet scale networks. The predicted distortion correlates strongly with the observed accuracy degradation, and an error configurable AxM case study implemented on an FPGA further confirms the analytical trends. By providing a lightweight alternative to behavioral or hardware level simulations, this framework enables rapid estimation of AxM impact on DNN inference quality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.